WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework #13 Key

Problem 1. a.) Suppose that $u : [a,b] \to [0,\infty)$ and $v : [a,b] \to \mathbb{R}$ are continuous functions and there exists a constant $C \in \mathbb{R}$ such that

$$v(t) \le C + \int_a^t v(s)u(s) \, ds$$
 for all $t \in [a, b]$.

Prove that

$$v(t) \le C \exp\left(\int_{a}^{t} u(s) \, ds\right)$$
 for all $t \in [a, b]$.

Proof. Start with

$$v(t) - \int_{a}^{t} v(s)u(s) \, ds \le C$$

and multiply this inequality with

$$u(t)\exp\left\{-\int_a^t u(s)\,ds\right\}$$
.

Because of our assumptions this expression is non-negative. Thus,

$$\left[v(t)u(t) - u(t)\int_a^t v(s)u(s)\,ds\right] \exp\left\{-\int_a^t u(s)\,ds\right\} \le Cu(t)\exp\left\{-\int_a^t u(s)\,ds\right\} \ .$$

Using the product rule this inequality can be written in the form

$$\frac{d}{dt} \left[\int_{a}^{t} v(s)u(s) \, ds \, \exp\left\{ -\int_{a}^{t} u(s) \, ds \right\} \right] \le -C \frac{d}{dt} \exp\left\{ -\int_{a}^{t} u(s) \, ds \right\}$$

Integrating over the interval [a, t] with $t \in [a, b]$ gives

$$\int_{a}^{t} v(s)u(s) \, ds \, \exp\left\{-\int_{a}^{t} u(s) \, ds\right\} \le C\left[1 - \exp\left\{-\int_{a}^{t} u(s) \, ds\right\}\right]$$

which results in

$$\int_{a}^{t} v(s)u(s) \, ds \le C \left[\exp\left\{ \int_{a}^{t} u(s) \, ds \right\} - 1 \right] \quad \text{for all } t \in [a, b]$$

The proof is finished by using the assumption one more time:

$$v(t) \le C + \int_a^t v(s)u(s) \, ds \le C \exp\left\{\int_a^t u(s) \, ds\right\}$$
 for all $t \in [a, b]$.

b.) Suppose that $u : [0,T] \to \mathbb{R}$ and $f : [0,T] \to \mathbb{R}$ are continuous functions, that f is non-negative, and that there exist two constant $C_0 \in \mathbb{R}$ and $C_1 > 0$ such that

$$u(t) \le C_0 + C_1 \int_0^t [u(s) + f(s)] \, ds$$
 for all $t \in [0, T]$.

Prove that

$$u(t) \le e^{C_1 t} \left(C_0 + C_1 \int_0^t f(s) \, ds \right) \quad \text{for all } t \in [0, T] .$$

Proof. Let

$$v(t) = C_0 + C_1 \int_0^t [u(s) + f(s)] ds$$
, $t \in [0, T]$.

Note that v is continuously differentiable and that

$$v'(t) = C_1[u(t) + f(t)] \le C_1[v(t) + f(t)]$$
.

This inequality can be rewritten as

$$\frac{d}{dt}[e^{-C_1t}v] \le e^{-C_1t}f(t) \; .$$

Integrating over [0, t] with $t \in [0, T]$ gives

$$e^{-C_1 t} v(t) \le v(0) + \int_0^t e^{-C_1 s} f(s) \, ds$$

and thus, since f is non-negative,

$$v(t) \le e^{C_1 t} v(0) + \int_0^t e^{C_1(t-s)} f(s) \, ds \le e^{C_1 t} \left(v(0) + \int_0^t f(s) \, ds \right) \, .$$

Finally, not that $v(0) = C_0$ and since $u(t) \le v(t)$ the claim has been proved.

Both results are know as Gronwall's Lemma or Gronwall's inequality.

Problem 2. Suppose that $w_1 \in \mathring{H}^1(\Omega)$ is a first normalized eigenfunction of the Dirichlet Laplacian, that is $-\Delta w_1 = \lambda_1 w_1$ in Ω in the weak sense and that $||w_1||_{L_2(\Omega)} = 1$.

a.) Let $\lambda_1 > 0$ be the first (smallest) eigenvalue of the Dirichlet-Laplacian in Ω . Prove that

$$\lambda_1 = \min \int_{\Omega} |\nabla u|^2 \, dx = \int_{\Omega} |\nabla w_1|^2 \, dx$$

where the minimum is taken over all $u \in H^1(\Omega)$ such that $||u||_{L_2(\Omega)} = 1$. (Hint: Use the fact that there exists an orthonormal basis of Dirichlet eigenfunctions w_1, w_2, \dots in $L_2(\Omega)$.)

Proof. Suppose that $u \in \mathring{H}^1(\Omega)$ and that $||u||_{L_2(\Omega)} = 1$. Then

$$u = \sum_{n=1}^{\infty} u_n w_n \quad \text{with} \quad u_n = (u, w_n)_{L_2(\Omega)} \quad \text{and} \quad \sum_{n=1}^{\infty} u_n^2 = 1 \quad \sum_{n=1}^{\infty} \lambda_n u_n^2 < \infty$$

Then

$$\int_{\Omega} |\nabla u|^2 \, dx = \sum_{n=1}^{\infty} \lambda_n u_n^2 \ge \lambda_1 \; .$$

 $\mathbf{2}$

Observe that the proof shows that for all $u \in \mathring{H}^1(\Omega)$ the inequality

$$\int_{\Omega} |\nabla u|^2 \, dx \ge \lambda_1 \int_{\Omega} |u|^2 \, dx$$

holds. One sees this when one replace u in the proof above with $u/||u||_{L_2(\Omega)}$. In other words, the constant $C = \lambda_1^{-1}$ is the best (i.e. smallest) constant in Poincaré's inequality.

b.) Prove that we can choose $w_1 > 0$ in Ω .

Proof. Let $w^+ = max\{0, w_1\}$ and $w^- = min\{0, w_1\}$ be the positive and negative part of w_1 , respectively. Then

$$\nabla w^{+} = \begin{cases} \nabla w_{1} & \text{a.e. on} & w_{1} > 0\\ 0 & \text{a.e. on} & w_{1} < 0 \end{cases} \quad \text{and} \quad \nabla w^{-} = \begin{cases} \nabla w_{1} & \text{a.e. on} & w_{1} < 0\\ 0 & \text{a.e. on} & w_{1} > 0 \end{cases}$$

(This statement is not obvious. It may deserve a proof.) Then with

$$a = \int_{\Omega} |w^+|^2 dx$$
 and $b = \int_{\Omega} |w^-|^2 dx$

one has, using a.), in particular the remark following the proof,

$$\lambda_1 = \int_{\Omega} |\nabla w_1|^2 \, dx = \int_{\Omega} |\nabla w^+|^2 \, dx + \int_{\Omega} |\nabla w^-|^2 \, dx \ge \lambda_1 (a+b) = \lambda \; .$$

Hence, both w^+ and w^- are eigenfunctions for the Dirichlet Laplacian with eigenvalue λ_1 . At least one of these two functions, say w^+ , cannot be identically zero. Then because of the strong maximum principle for second order elliptic equations one obtains $w_1 > 0$ in Ω and $w^- > 0$.

c.) Show that λ_1 is a simple eigenvalue.

Solution. If there are two linearly independent eigenfunctions, according to part b.), they must be both positive. However, then the cannot be orthogonal to each other.