
WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #13 Key

Problem 1. a.) Suppose that u : [a, b] → [0,∞) and v : [a, b] → R are continuous
functions and there exists a constant C ∈ R such that

v(t) ≤ C +

∫ t

a

v(s)u(s) ds for all t ∈ [a, b] .

Prove that

v(t) ≤ Cexp

(∫ t

a

u(s) ds

)
for all t ∈ [a, b] .

Proof. Start with

v(t)−
∫ t

a

v(s)u(s) ds ≤ C

and multiply this inequality with

u(t)exp

{
−
∫ t

a

u(s) ds

}
.

Because of our assumptions this expression is non-negative. Thus,[
v(t)u(t)− u(t)

∫ t

a

v(s)u(s) ds

]
exp

{
−
∫ t

a

u(s) ds

}
≤ Cu(t)exp

{
−
∫ t

a

u(s) ds

}
.

Using the product rule this inequality can be written in the form

d

dt

[∫ t

a

v(s)u(s) ds exp

{
−
∫ t

a

u(s) ds

}]
≤ −C d

dt
exp

{
−
∫ t

a

u(s) ds

}
.

Integrating over the interval [a, t] with t ∈ [a, b] gives∫ t

a

v(s)u(s) ds exp

{
−
∫ t

a

u(s) ds

}
≤ C

[
1− exp

{
−
∫ t

a

u(s) ds

}]
which results in∫ t

a

v(s)u(s) ds ≤ C

[
exp

{∫ t

a

u(s) ds

}
− 1

]
for all t ∈ [a, b]

The proof is finished by using the assumption one more time:

v(t) ≤ C +

∫ t

a

v(s)u(s) ds ≤ Cexp

{∫ t

a

u(s) ds

}
for all t ∈ [a, b] .
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b.) Suppose that u : [0, T ] → R and f : [0, T ] → R are continuous functions, that f
is non-negative, and that there exist two constant C0 ∈ R and C1 > 0 such that

u(t) ≤ C0 + C1

∫ t

0

[u(s) + f(s)] ds for all t ∈ [0, T ] .

Prove that

u(t) ≤ eC1t

(
C0 + C1

∫ t

0

f(s) ds

)
for all t ∈ [0, T ] .

Proof. Let

v(t) = C0 + C1

∫ t

0

[u(s) + f(s)]ds , t ∈ [0, T ] .

Note that v is continuously differentiable and that

v′(t) = C1[u(t) + f(t)] ≤ C1[v(t) + f(t)] .

This inequality can be rewritten as

d

dt
[e−C1tv] ≤ e−C1tf(t) .

Integrating over [0, t] with t ∈ [0, T ] gives

e−C1tv(t) ≤ v(0) +

∫ t

0

e−C1sf(s) ds

and thus, since f is non-negative,

v(t) ≤ eC1tv(0) +

∫ t

0

eC1(t−s)f(s) ds ≤ eC1t

(
v(0) +

∫ t

0

f(s) ds

)
.

Finally, not that v(0) = C0 and since u(t) ≤ v(t) the claim has been proved. �

Both results are know as Gronwall’s Lemma or Gronwall’s inequality.

Problem 2. Suppose that w1 ∈ H̊1(Ω) is a first normalized eigenfunction of the Dirichlet
Laplacian, that is −∆w1 = λ1w1 in Ω in the weak sense and that ‖w1‖L2(Ω) = 1.

a.) Let λ1 > 0 be the first (smallest) eigenvalue of the Dirichlet-Laplacian in Ω. Prove
that

λ1 = min

∫
Ω

|∇u|2 dx =

∫
Ω

|∇w1|2 dx ,

where the minimum is taken over all u ∈ H̊1(Ω) such that ‖u‖L2(Ω) = 1. (Hint: Use the
fact that there exists an orthonormal basis of Dirichlet eigenfunctions w1, w2, ... in L2(Ω).)

Proof. Suppose that u ∈ H̊1(Ω) and that ‖u‖L2(Ω) = 1. Then

u =
∞∑
n=1

unwn with un = (u,wn)L2(Ω) and
∞∑
n=1

u2
n = 1

∞∑
n=1

λnu
2
n <∞

Then ∫
Ω

|∇u|2 dx =
∞∑
n=1

λnu
2
n ≥ λ1 .
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Observe that the proof shows that for all u ∈ H̊1(Ω) the inequality∫
Ω

|∇u|2 dx ≥ λ1

∫
Ω

|u|2 dx

holds. One sees this when one replace u in the proof above with u/‖u‖L2(Ω). In other
words, the constant C = λ−1

1 is the best (i.e. smallest) constant in Poincaré’s inequality.

b.) Prove that we can choose w1 > 0 in Ω.

Proof. Let w+ = max{0, w1} and w− = min{0, w1} be the positive and negative part of
w1, respectively. Then

∇w+ =

{
∇w1 a.e. on w1 > 0

0 a.e. on w1 < 0
and ∇w− =

{
∇w1 a.e. on w1 < 0

0 a.e. on w1 > 0
.

(This statement is not obvious. It may deserve a proof.) Then with

a =

∫
Ω

|w+|2 dx and b =

∫
Ω

|w−|2 dx

one has, using a.), in particular the remark following the proof,

λ1 =

∫
Ω

|∇w1|2 dx =

∫
Ω

|∇w+|2 dx+

∫
Ω

|∇w−|2 dx ≥ λ1(a+ b) = λ .

Hence, both w+ and w− are eigenfunctions for the Dirichlet Laplacian with eigenvalue λ1.
At least one of these two functions, say w+, cannot be identically zero. Then because of
the strong maximum principle for second order elliptic equations one obtains w1 > 0 in
Ω and w− > 0. �

c.) Show that λ1 is a simple eigenvalue.

Solution. If there are two linearly independent eigenfunctions, according to part b.), they
must be both positive. However, then the cannot be orthogonal to each other.


