WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE DIFFERENTIALGLEICHUNGEN

Homework \#13 Key

Problem 1. a.) Suppose that $u:[a, b] \rightarrow[0, \infty)$ and $v:[a, b] \rightarrow \mathbb{R}$ are continuous functions and there exists a constant $C \in \mathbb{R}$ such that

$$
v(t) \leq C+\int_{a}^{t} v(s) u(s) d s \quad \text { for all } t \in[a, b]
$$

Prove that

$$
v(t) \leq C \exp \left(\int_{a}^{t} u(s) d s\right) \quad \text { for all } t \in[a, b]
$$

Proof. Start with

$$
v(t)-\int_{a}^{t} v(s) u(s) d s \leq C
$$

and multiply this inequality with

$$
u(t) \exp \left\{-\int_{a}^{t} u(s) d s\right\}
$$

Because of our assumptions this expression is non-negative. Thus,

$$
\left[v(t) u(t)-u(t) \int_{a}^{t} v(s) u(s) d s\right] \exp \left\{-\int_{a}^{t} u(s) d s\right\} \leq C u(t) \exp \left\{-\int_{a}^{t} u(s) d s\right\} .
$$

Using the product rule this inequality can be written in the form

$$
\frac{d}{d t}\left[\int_{a}^{t} v(s) u(s) d s \exp \left\{-\int_{a}^{t} u(s) d s\right\}\right] \leq-C \frac{d}{d t} \exp \left\{-\int_{a}^{t} u(s) d s\right\}
$$

Integrating over the interval $[a, t]$ with $t \in[a, b]$ gives

$$
\int_{a}^{t} v(s) u(s) d s \exp \left\{-\int_{a}^{t} u(s) d s\right\} \leq C\left[1-\exp \left\{-\int_{a}^{t} u(s) d s\right\}\right]
$$

which results in

$$
\int_{a}^{t} v(s) u(s) d s \leq C\left[\exp \left\{\int_{a}^{t} u(s) d s\right\}-1\right] \quad \text { for all } t \in[a, b]
$$

The proof is finished by using the assumption one more time:

$$
v(t) \leq C+\int_{a}^{t} v(s) u(s) d s \leq C \exp \left\{\int_{a}^{t} u(s) d s\right\} \quad \text { for all } t \in[a, b]
$$

b.) Suppose that $u:[0, T] \rightarrow \mathbb{R}$ and $f:[0, T] \rightarrow \mathbb{R}$ are continuous functions, that f is non-negative, and that there exist two constant $C_{0} \in \mathbb{R}$ and $C_{1}>0$ such that

$$
u(t) \leq C_{0}+C_{1} \int_{0}^{t}[u(s)+f(s)] d s \quad \text { for all } t \in[0, T] .
$$

Prove that

$$
u(t) \leq e^{C_{1} t}\left(C_{0}+C_{1} \int_{0}^{t} f(s) d s\right) \quad \text { for all } t \in[0, T]
$$

Proof. Let

$$
v(t)=C_{0}+C_{1} \int_{0}^{t}[u(s)+f(s)] d s, \quad t \in[0, T]
$$

Note that v is continuously differentiable and that

$$
v^{\prime}(t)=C_{1}[u(t)+f(t)] \leq C_{1}[v(t)+f(t)]
$$

This inequality can be rewritten as

$$
\frac{d}{d t}\left[e^{-C_{1} t} v\right] \leq e^{-C_{1} t} f(t)
$$

Integrating over $[0, t]$ with $t \in[0, T]$ gives

$$
e^{-C_{1} t} v(t) \leq v(0)+\int_{0}^{t} e^{-C_{1} s} f(s) d s
$$

and thus, since f is non-negative,

$$
v(t) \leq e^{C_{1} t} v(0)+\int_{0}^{t} e^{C_{1}(t-s)} f(s) d s \leq e^{C_{1} t}\left(v(0)+\int_{0}^{t} f(s) d s\right)
$$

Finally, not that $v(0)=C_{0}$ and since $u(t) \leq v(t)$ the claim has been proved.
Both results are know as Gronwall's Lemma or Gronwall's inequality.
Problem 2. Suppose that $w_{1} \in \stackrel{\circ}{H}^{1}(\Omega)$ is a first normalized eigenfunction of the Dirichlet Laplacian, that is $-\Delta w_{1}=\lambda_{1} w_{1}$ in Ω in the weak sense and that $\left\|w_{1}\right\|_{L_{2}(\Omega)}=1$.
a.) Let $\lambda_{1}>0$ be the first (smallest) eigenvalue of the Dirichlet-Laplacian in Ω. Prove that

$$
\lambda_{1}=\min \int_{\Omega}|\nabla u|^{2} d x=\int_{\Omega}\left|\nabla w_{1}\right|^{2} d x
$$

where the minimum is taken over all $u \in \dot{H}^{1}(\Omega)$ such that $\|u\|_{L_{2}(\Omega)}=1$. (Hint: Use the fact that there exists an orthonormal basis of Dirichlet eigenfunctions w_{1}, w_{2}, \ldots in $L_{2}(\Omega)$.) Proof. Suppose that $u \in \stackrel{\circ}{H}^{1}(\Omega)$ and that $\|u\|_{L_{2}(\Omega)}=1$. Then

$$
u=\sum_{n=1}^{\infty} u_{n} w_{n} \quad \text { with } \quad u_{n}=\left(u, w_{n}\right)_{L_{2}(\Omega)} \quad \text { and } \quad \sum_{n=1}^{\infty} u_{n}^{2}=1 \quad \sum_{n=1}^{\infty} \lambda_{n} u_{n}^{2}<\infty
$$

Then

$$
\int_{\Omega}|\nabla u|^{2} d x=\sum_{n=1}^{\infty} \lambda_{n} u_{n}^{2} \geq \lambda_{1}
$$

Observe that the proof shows that for all $u \in \stackrel{\circ}{H}^{1}(\Omega)$ the inequality

$$
\int_{\Omega}|\nabla u|^{2} d x \geq \lambda_{1} \int_{\Omega}|u|^{2} d x
$$

holds. One sees this when one replace u in the proof above with $u /\|u\|_{L_{2}(\Omega)}$. In other words, the constant $C=\lambda_{1}^{-1}$ is the best (i.e. smallest) constant in Poincaré's inequality.
b.) Prove that we can choose $w_{1}>0$ in Ω.

Proof. Let $w^{+}=\max \left\{0, w_{1}\right\}$ and $w^{-}=\min \left\{0, w_{1}\right\}$ be the positive and negative part of w_{1}, respectively. Then

$$
\nabla w^{+}=\left\{\begin{array}{ccc}
\nabla w_{1} & \text { a.e. on } & w_{1}>0 \\
0 & \text { a.e. on } & w_{1}<0
\end{array} \text { and } \nabla w^{-}=\left\{\begin{array}{cll}
\nabla w_{1} & \text { a.e. on } & w_{1}<0 \\
0 & \text { a.e. on } & w_{1}>0
\end{array}\right. \text {. }\right.
$$

(This statement is not obvious. It may deserve a proof.) Then with

$$
a=\int_{\Omega}\left|w^{+}\right|^{2} d x \quad \text { and } \quad b=\int_{\Omega}\left|w^{-}\right|^{2} d x
$$

one has, using a.), in particular the remark following the proof,

$$
\lambda_{1}=\int_{\Omega}\left|\nabla w_{1}\right|^{2} d x=\int_{\Omega}\left|\nabla w^{+}\right|^{2} d x+\int_{\Omega}\left|\nabla w^{-}\right|^{2} d x \geq \lambda_{1}(a+b)=\lambda .
$$

Hence, both w^{+}and w^{-}are eigenfunctions for the Dirichlet Laplacian with eigenvalue λ_{1}. At least one of these two functions, say w^{+}, cannot be identically zero. Then because of the strong maximum principle for second order elliptic equations one obtains $w_{1}>0$ in Ω and $w^{-}>0$.
c.) Show that λ_{1} is a simple eigenvalue.

Solution. If there are two linearly independent eigenfunctions, according to part b.), they must be both positive. However, then the cannot be orthogonal to each other.

